Code Compression as a Variable
in Hardware/Software Co-Design

Haris Lekatsas
Princeton University

Abstract

We present a new way to practice and view hardware/software
co-design: rather than raising the level of abstraction in or-
der to ezploit the highest possible degree of optimization,
we use code compression i.e. we practice co-design at the
bit-level. Through our novel architecture combined with our
compression methodology this results in optimization of all
magjor design goals/constraints. In particular, we present a
compression methodology that deploys what we call a ”post-
cache architecture” (i.e. the detached decompression unit is
located between the CPU and the instruction cache). We
present a design methodology that allows the designer to con-
trol parameters like speed, power, and area through the choice
of compression parameters. In addition we show that our
compression methodology (using o Markov Model) is more
efficient than the widely used Huffman compression scheme.

1 introduction

Code compression has first been proposed in the early 90’s
as a method to optimize embedded systems [5]. The main
focus was on instruction code size minimization and, conse-
quently, the designer was able to to reduce the (Sexpensive)
on—chip memory that holds the instruction code.” There-
fore, the code compression hardware (i.e. the decompression
unit) is traded against software (i.e. instruction code) and
vice versa which means that instruction code compression is
a classical hardware/software co—design optimization prob-
lem. Typically, in embedded systems deploying instruction
code compression the instruction code is compressed off-line.

This is possible since I;he code running on an embedded sys-

tem is known a priori'. The compressed code is then placed
into the memogy and when the system is running the code
is decompressed on-the-fly by a decompression unit that is
usually placed between main memory and instruction cache
(i.e. pre-cache architecture). However, since SOCs become
more and more complex, design constraints and and their
interdependencies become more complex as well. In other
words, purely main memory size reguction may not be a
sufficient reason to design a system using code compression.
Complex systems have to be optimized for performance and
power as well. This especially holds for the fast growin
market of mobile computing/communication devices like ce
phones, personal digital assistants etc.

This is the motivation for the work presented here: to
explore whether code compression can be beneficial for per-
formance and power in addition to area savings. Therefore,
we designed an architecture that we call a posi-cache ar-
chitecture (decompression unit located between CPU and
cache). Also, our decompression unit is able to decompress

on-the-fly without system performance penalties (since this

!Please note that this does not hold for software creating self-
modifying code.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

CODES 2000 San Diego CAUSA

Copyright ACM 2000 1-58113-268-9/00/5...35.00

Jorg Henkel
NEC USA

120

Wayne Wolf
Princeton University

is a more critical issue in our novel post-cache architecture
compared to a pre-cache architecture). Using this archi-
tecture combined with the decompression algorithm even-
tually resulted in area savings, performance increases and

ower reduction since more system resources are directly
impacted (all data buses, instruction cache etc.; see also
discussion in Section 3). This way, we redefine the way
hardware/software co-design has been practiced so far. Pre-
viously, the commonly held opinion was that a higher level
of abstraction enables the largest degree of freedom for high
optimization gotentials. As an example, hardware/software
systems can be modeled as a set of communicating tasks.
The hardware/software co-design goal is, for example, to
map those tasks to software (i.e. as a program running on
a programmable processor) or t6-hardware (hardwired and
application specific) while minimizing communication etc.
Our approach is orthogonal to previous methods: we view
a program or a task as a bit-stream. At this point we have
no knowledge of its functionality. Neither do we know how
tasks interact with each other, how many tasks exist etc.
Even the border between application prog;am and operating
system is blurred. Still, we can achieve high optimizations
in all major design goals/constraints (or, alternatively, trade
them against each other). Our method gives co-synthesis an
additional deigree of freedom for optimization. The level of
abstraction of our method is far below a.l%orithmic high-level
program transformations like, for example, loop transforma-~
tion but higher than behavioral synthesis.

We note that the focus of this paper is not the com-
pression method. This is described in more detail in our
previous work. In this paper we focus on the trade—offs be-
tween the design goals/constraints performance, power and
area and on the comparison between our Markov compres-
sion scheme and the widely used Huffman coding scheme.
We also show how to choose the parameters for our Markov
model to achieve good results. For details on optimizing our
compression al§orithm for low power consumption, please
refer to [8], and for encoding the (compressed) instructions
to reduce bit toggling on the data buses, please refer to [9].

This paper is structured as follows: Section 2 gives an
overview of related work, while Section 3 discusses our novel
post-cache architecture and its effect on the design con-
straints/goals performance, power and area as well as their
interdependencies. Section 4 explains our compression scheme
and compares it to Huffman coding, Section 6 presents the
results in terms of the discussed trade—offs. Finally, Sec-
tion 7 gives a conclusion.

2 Related Work

Code compression has increasingly become popular mainly
as a method to reduce chip area in embedded systems. Most
methods designed for embedded systems use a run-time de-
compression unit to decode compressed instructions on-the-
fly. Wolfe and Chanin [5] were the first to propose such
a scheme, where Huffman [13] codes have been used to en-
code cache blocks. A hardware decompression unit is placed
between the cache and main memory to decompress cache
blocks to their original size before they are inserted into the
cache. A similar technique which uses more sophisticated
Huffman tables has been developed by IBM [1]. Other tech-
niques use a table to index sequences of frequently appear-
ing instructions using a hardware decompression module [6],

or decompress completely in software [12]. Okuma et al.

El] <groposed an encoding technique that takes into account
elds within instructions. Our approach to code compres-
sion is novel as we have designed a decompression engine
that can reside as a stand-alone module at any stage of the
memory hierarchy. The decompression algorithm achieves
significant reduction and can be used right before the CPU,
or between the cache and main memory without any modi-
fication.

Although memory optimization has been the main rea-
son for compressing code, some recent research has explored
the power optimization aspect of it. Yoshida et al. [3] pro-
posed a logarithmic-based compression scheme which can
result in power reduction as well. A recent approach [14]
investigated the impact of code compression on the power
consumption of a sub-system, namely the main memory
and the buses between main memory and decompression
unit and between decompression unit and CPU. However,
the impact of code compression on other system parts like
caches and CPU has not yet been investigated.

3 Architectural trade-offs

A discussion on the trade-offs between performance, power
and area follows, as these are directly impacted by our method-
ology. Shown in Fig. 1 is our decompression engine placed in
a post-cache architecture: the compressed code is located in
the main memory and transferred to the instruction cache
via DataBus 2. As a demand from the CPU occurs, the
compressed code is read from the instruction cache, sent via
DataBus 1 and then compressed on-the-fly in the decom-
pression engine. Though the decompression engine is de-
tached from the CPU (i.e. no changes to the CPU core are
necessar)t?, it is very close. Performance, power and area of
an embedded system using our methodology, are impacted
as follows:

Performance: Compressing instructions effectively in-
creases the available bus bandwidth. An additional advan-
tage of our architecture is that the instruction cache is ef-
fectively larger since it hosts compressed code. The decom-
pression engine incurs a performance penalty, however the
reduced number of cache misses (due to larger ”effective”
cache size) can improve overall performance. Furthermore,
due to compressed code the overall number of memory ac-
cesses and the total number of waiting cycles is reduced. Qur
experimental results show that depending on the cache size,
overall performance can be improved despite the decompres-
sion penalty. We found that code compression is ineffective
only when the cache is already larger than necessary.

Power: Main memory can be made smaller since we
need less space for holding the instruction code. This re-
duces the energﬁ consumption for each access to the main
memory since the effective capacitance is smaller (the ef-
fective capacitance is a function of the memory size). As
for the buses DataBus 1 and DataBus 2, the energy con-
sumption also decreases since fewer instruction bitsg&)f the
compressed code) are sent via the buses and thus they cause
lesser bus toggles. The main memory energy consumption
decreases as well since its effective capacitance (due to a
reduced size) is smaller, too. Finally, even the energy con-
sumption of the CPU decreases since the application now ex-
ecutes faster (through fewer instruction cache misses) due to
a reduced number of waiting cycles caused by cache misses.
We note that compressing in general will generally increase
bit-toggling on the bus since it will increase the ”random-
ness” of the code. Therefore there is an increase in bus
power consumption per cycle. However, the overall number
of bus transactions is much smaller in the compressed archi-
tecture, since the total number of memory accesses is much
smaller.

Area: Since main memory and cache sizes can be chosen
smaller, area can be saved. An area penalty, however, occurs
due to the decompression engine. Still, in most cases there
is a al}et saving of area since the savings are larger than the
penalty.

We want to emphasize that it is possible to trade the

121

AddressBus 32
B #
D-cache "
" 32 E}
Main) 5 -
Memory DastaBus 2 DawsBus 1 [

I-cache

Figure 1: Post-cache Architecture

above design goals/constraints against each other. For ex-
ample, the performance increase can be used to save more
energy by slowing down the clock frequency. The potential
Eerforma.nce, ower and area improvements can be achieved

y changing the system parameters main memory size, in-
struction cache size and bus bandwidth. Furthermore, our
techniques are independent of program optimizations. Re-
gardless of any optimizations dlt))ne at the source-code level
or by the compiler, our compression methodology can still
compress effectively.

4 Code Compression

In code compression applications, deco:é)ression is done for
small blocks of code, since we cannot afford to decompress
and then use the whole executable program due to scarce
memory resources. Since decompression is done on-the-fly,
and since programs have branch and call instructions, we
need a random-access decompression algorithm [7). The de-
compression engine should be able to start decompression at
any point in the code, or at least at some byte boundaries.

The method presented here is only applicable to fixed-
width instructions sets (RISC). While it is possible to use
it for a variable-width instruction set, our Markov model is
tuned to give good performance on tixed-width. It should
be noted that CISC architectures tend to be more dense by
design, and therefore will not benefit from code compression
as much as RISC architectures do. In the following, we have
the used the SPARC instruction set.

4,1 Huffman and table-based arithmetic coding

We investigated two different compression methods to en-
code programs, namely Huffman coding {13] and a table-
based arithmetic coder [7]. A detailed explanation of Huff-
man and arithmetic coding can be found in the book by Bell
et al. [11]. Regarding arithmetic coding, the standard proce-
dure involves arithmetic operations which make the method
generally inefficient. We avoid arithmetic operations com-

letely and replace them with a simple finite state machine
or encoding and a more complicated one for decoding.

Fig. 2 %left 1pa.rt) shows a sim;ile finite state machine
used to encode. It is easy to verify that this simple machine
will encode favorably 0’s as opposed to 1’s that in general

roduce more bits. Consider the message 0010010 which,
if the starting state is A, will produce output 100100, thus
compression is 6/8. Fig. 2 (right part) shows two possible
macﬁines to decode the messages produced by the machine
on the left side of Fig. 2. The first machine uses exactly
the same number of states as the encoding machine. The
second combines more bits into one cycle, thus achieving
faster decoding. Note that this is not a Huffman decoder as
it will decode a variable number of bits per cycle (Huffman
decoders accept variable bits as input, but produce fixed-
length outputg).

n practice we use more complicated machines to achieve
good compression ratios. A good machine should have inter-
nal memory: while encoding a certain bit in an instruction
it should remember what the previous bits were and encode
the current bit accordingly. We use a Markov model for this
purpose. A Markov mod‘él consists of a number of states,

Encoding Decoding

Figure 2: Compression finite state machines

Figure 3: Example Markov model

where each state is connected to other states and each tran-
sition has a probability assigned to it. By assigning each
node to a certain bit of an instruction (in fact, as we will see
subsequently, many different nodes are assigned to a cer-
tain bit) and assigning each of the two transitions to the
K/x{*obabi ities of this bit being a "0” or a "1”, we can form a

arkov model which will remember what the previous bits
were. Depending on the instruction to be encoded, a certain
path along the Markov nodes is followed, whose probability
1s the product of the probabilities along this patg.

_Fig. 3 shows an example Markov model. We use two
main variables to describe our Markov models, namely the
model depth and the model width. These variables represent
the number of layers and the number of Markov nodes per
layer, respectively. We have found experimentally that the
depth should divide the instruction size evenly, or be mul-
tiples of the instruction size. This is intuitive{y true as we
would like our model to start at exactly the same layer af-
ter some constant number of instructions. This ensures that
each layer in the Markov model corresponds to a certain bit
in the instruction and therefore it stores the statistics for
this bit. We have a number of different nodes per layer be-
cause we need some memory of what were the previous bits
(the current node depends on the path we followed for this
instruction). The model’s width is a measure of the model’s
ability to remember the path to a certain node. Since each
node has two transitions leading to it, after logaW idth tran-
sitions the model will lose all information a!{)out where it
started. For 32-bit code, we found that a width of 16 and a
depth of 32 achieve reasonable compression, while keeping
the number of Markov nodes small (16 - 32 = 512 noé’es).
For large programs where the model size is amortized by a
big reduction in program size, bigger models can be used.

On each node of the Markov model, a probability is as-
signed which gives the probability of each transition. The
probabilities are calculated as a preprocessing step. The
encoder scans the program once and traverses the paths ac-
cording to the instructions encountered. Keeping track of
which paths are visited more frequently it calculates the

122

Accuracy | Markov Width | Comp. Ratio Area [Tr] |
N=4 width=4 0.73 1,896 |
Width = 16" —07T 13050
width = 64 U.67 5
width — 256 U.65 51,606
N=8 width=4 0.63 5,075
width =16 0.58 12,714
width = 64 —U.54 21,812
width = 256 —0.50 45,522
N=16 width=4 0.60 4,8
Width = 18 053 11,
width = 64 —0.48 23,796 |
width = 256 0.44 34,846
N=32 width=4 0.59 4,545
width = 16 U753 12,071
width — 64 0.6 22,828
width = 250 0.41 32,576

Table 1: Compression and Area Results for MPEG

probabilities for each transition. Note that the structure of
the model is decided a priori (parameters width and depth).

Once the model has been built, we use approximate arith-
metic coding in the form of finite state machines [2]. The
machine in Fig. 2 is a machine that is derived from such
an arithmetic coder. We do not explain how to generate
such machines here; the reader should consult the paper by
Howard and Vitter [2]. The machines we use in practice
are bigger and apart from the input symbol the also take a
probability from the Markov model as a second input. For
example, an input *0” will have multiple transitions depend-
ing on its probability given by the current Markov state. We
chose not to include that in figure 2 for simplicity. Depend-
ing on these two inputs, a transition is selected for both the
finite state machine and the Markov model.

5 Hardware/software trade-offs

As explained above code compression can be a very effec-
tive way of improving area, performance and power con-
sumption on embedded systems. Compression reduces the
amount of software, by representing it with fewer bits. On
the other hand, we need extra hardware to decompress the
compressed executable program. Furthermore, the amount
of compression influences various design goals such as area,
bus bandwidth, cache size, power consumption and perfor-
mance. It is also possible to trade-off these design goals as
will be shown in the next section. We note that our com-
pression methodology is fully customizable through the use
of parameters controlling the size of the finite state machine.
These parameters control the compression ratio and the de-
compression engine's speed and area.

We view our methodology as hardware/software co-design
at the bit-level: we replace a significant part of the binary
executable program (through compression) with hardware
(by using a decompression engine). This design methodol-
ogy poses some important questions. How much should we
compress the executable progtam, or how large should be the
software running on the embedded system? How should we
design our cache and main memory to optimize for our de-
sign goals? How can we trade-off between our design goals?
In the next section we answer these questions by experi-
menting with different compression parameters, and by pre-
senping a step-by-step approach for achieving an optimum

esign.

6 Experimental results and interpretation

The applications we used to conduct our experiments
are: An algorithm for computing 3D vectors for a motion
picture (”i3d”), a complete MPEGII encoder (”mpeg”), a
smoothing algorithm for digital images (”smo”), and a trick
animation algorithm (”frick”). The results presented here
are for the SPARC instruction set and are based on the
architecture shown in Fig. 1. To estimate power, we used the

Appl. Method | Comp.Ratio | Area [Tr] | Ex.time [Cycles] | Ex.time gain (%) | Tot. Energy [J] | Energy gain (%)
13d - 128 No _comp. 1.00 38,912 107,860 n/a 0.002845 nja
‘Hu‘lf'man'l 0.66 26,624 53,612 -50.29 0.001904 “33.08
SAMT 0.53 , 76,964 ~56.46 U.001614 2327
mpeg - 2K | No comp. 1.00 1,146,880 9,109,114 néa 3.210392 nga |
Hufman 066 1,150,976 — 4,704,628 -48. . ~28.
SAMT U.53 635,306 — 4,827,250 -37.01 2.216296 -30.96
smo - 512 No comp. 1.00 40,960 3,960,603 n/a 0.181962 n/a
Hulman 0.65 36,864 3,959,643 -2.42 U.160129 ~T2.00
SAMT TU55) 959,475 ~Z. 0.147363 ~I9.01
trick - 256, | No comp. 1.00 28,672 5,341,388 n/a 0.118718 n/a
HuHman V.65 32,768 —Z,495, -53.) 174 1391
~U53 27,800 2,028,292 ~52.02 U.054830 ~53.81
Table 2: Comparison of major design goals/constraints, area, execution time and energy
1600000 100000000
1460000 - 848 & 448 (Accuracy.W idth.Cache_size) 90000000 3
1200000 64 [5 - 80000000 +——
) 4. @
= oS T < 70000000 3
5 00001 32256816465 84 44l 5 60000000 "
© -
5 0000 3225.4 16.16.4 E 50 %
3 32.256.1 < 40000000 —
£ 600000 1 322562 o163 - ;5 30000000 \
400000 20000000
200000 10000000 e ——— -
0 T T T T
0 " — — 1 2 4 8 16

5000000 0000000 15000000 20000000 25000000
Execution time [cycles]

0

Figure 4: Area - Execution time graph

framework developed by Li and Henkel {15] which allows us

to g'cla‘t;energy and performance? results for the whole system.

ble 1 shows the compression ratios and the areas for
several different Markov model parameters for the mpeg ap-
plication. In this table the area refers to decompression
unit area only (transistor count). In the following we use
the term area for the number of all transistors related to
all memory resources (cache, main memory) as well as the
decompression unit. That means area is counted only for
those system resources that are directly impacted by code
compression and thus might be considered to change. Al
other resources remain constant (CPU, for example).

The parameter N (accuracy) controls the number of states
in the finite state machine. An interesting conclusion that
can be derived from this table is that although increasing
the Markov model width tends to increase area, for larger
(better% values of the accuracy parameter N, the total area
is smaller. This is due to the fact that more accurate de-
coders need to store less number of transitions per state.
Therefore, although the total number of states is larger, the
ove:laill storage requirements for the finite state machine are
smaller.

Table 2 compares our algorithm with Huffman and with
the non-compressed case. Next to each application we also
show the cache size used. In terms of compression ratio
SAMC is always superior even with relatively small but area-
efficient parameters. In this table a combination of N=8
and Width=16 is chosen to keep the size of the decompres-
sion table small. For performance and energy results we
also show the improvement over the non-compressed case
(columns Ex.time gain and Energy gain). In order to get
better compression ratios and decompression speed, we have

2We measure performance in the number of cycles it takes to exe-
cute a specific application.

123

Cache Size {Kbytes]

Figure 5: Performance vs. Cache size

compressed some instructions using a small dictionary as
discussed in our other work [8]. As we can see, our SAMC
technique achieves high improvements in all major design
goals/constraints for all applications compared to the non-
compressed version. Comga.red to Huffman, SAMC is es’Ige-
cially with respect to performance and energy better. The
one exception is mpeg where the chosen parameter for cache
size is better adapted to Huffman in terms of performance.
But even in this case area for SAMC is significantly smaller.
And as we discussed in Section 3 we can a.lwa;i‘s trade area,
performance and energy against each other. The compres-
sion ratio achieved with our SAMC technique is always bet-
ter than Huffman. This results in area advantages especiall
for large applications like mpeg (150KB binary code). This
is because tﬁe size of the decompression unit s only a frac-
tion of the executable size and thus overall area is reduced
by about 45%. Please note that Table 2 contains only val-
ues for one combination of compression parameters N and
width. By changing these, we can have larger benefits, at
the cost of possibly extra area. For large applications this
should not be an issue.

Fig. 4 shows area vs. performance results for different
Markov parameters and cache sizes for the mpeg application.
Clearly, the closer to %),0%1 we get the better the choice of
Markov parameters. Each point in space has 3 numbers
associated with it: the accuracy N, Markov width and the
cache size. We compiled a similar graph for energy vs. area
where the same combinations of accuracy and Markov width
five the best result for energy as well. We omitted the graph
or space reasons. From these graphs, we conclude that the
combination 32.256.2 is the best in terms of area and energy
consumption and performance.

The same conclusion can be derived from a different
path, more natural for the designer: Fig. 5 and Fig. 6 show

performance and energy versus cache size for the non-compressed

18
16 &Y
14 .
S 12 >
] 10
g 8
&
R 6
4 - SE—
[} T T T T 1
1 2 4 8 16
Cache Siz [Kbytes)
Figure 6: Energy - Cache size graph
g
E HArea
H MEx. Time
2 & Energy
-3
£
70

Figure 7: Selected improved designs, negative numbers refer to
improvements of the respective design goals/constraints

mpeg application. From these two graphs we conclude that a
cache of 4KB would be a desirable value since energy is min-
imum. As explained in section 3 a 4KB cache for the non-
compressed case can lead to equivalent performance with a
2KB cache if the code is compressed by 50% or more. By
looking at Table 1 we see that such a compression ratio can
be achieved with N=32 and width=64 or 256. Thus, our
conclusion in the previous paragraph is confirmed by this
analysis. It suggests the following design steps: The power,
performance and area requirements first lead to a cache size
and a main memory size. Subsequently, we pick a com-
pression ratio that will use a smaller cache size with the
same behavior. Finally the Markov parameters are tuned to
achieve the required compression ratio.

Fig. 7 shows improvement in area, execution time and
power consumption for our applications by choosing the best
combination of Markov parameters and cache size. (For
each ﬁpplication we chose different parameters; these results
should not be confused with results in Table 2). As ex-
plained in section 3, deFending on the design constraints, it
1s possible to trade-off tor example execution speed for area
etc. Furthermore, compression allows us to use a smaller
instruction cache since the ”effective” I-cache size due to
compression is higher. That means, w'{‘o loss of performance
we can choose a smaller I-cache size. The benefit is cost but
also power, because if the I-cache is smaller than each access
to the I-cache is less power consuming since the switching
capacitance is smaller too.

124

7 Conclusions

We presented a new way to practice hardware/software co-
design by using code compression. Though the level of ab-
straction of our method is far below task—level or algorithmic—
level optimizations, it achieves a high performance increase,
high power savings on a possibly smaller (depending mainly
on the size of the application) chip area. We have shown that
we can trade the constraints against each other, depending
on the designer’s goals. The optimization potential has been
achieved by our new post—cacﬁe architecture combined with
our optimized compression method. A restriction of our ap-

roach is that it can be applied to embedded systems only
fsince the code must be known a priori). We conclude that
our compression algorithm and the proposed architecture
represent a very efficient approach for optimizing embedded
systems.

Acknowledgments

We would like to thank Frank Vahid and Tony Givargis from
UC Riverside for their bus-power model.

References

[1] T.M.Kemp, R.K.Montoye, J.D.Harper, J.D.Palmer and
D.J.Auerbach, A Decompression Core for PowerPC, IBM
Journal of Research and Development, vol. 42(6) pp. 807-812,
November 1998.

P.G. Howard and J.S. Vitter, Practical Implementations of
Arithmetic Coding, Image and Text Compression, Kluwer
Academic Publishers, Norwell, MA, pp. 85-112, Kluwer Aca-
demic Publishers, Norwell, MA, 1992.

Y. Yoshida, B.-Y. Song, H. Okuhata and T. Onoye An Ob-
ject Code Compression Approach to Embedded Processors,

roceedings of the International Symposium on Low Power
Electronics and Design (ISLPED) pp. 265-268, ACM, August
1997.

T.Okuma, H.Tomiyama, A.Inoue, E.Fajar and H.Yasuura”, In-
struction Encoding Technigues for Area Minimization of In-
struction ROM, International Symposium on System Synthe-
sis, pp. 125-130, December, 1998.

A. Wolfe and A. Chanin, Fzecuting Compressed Programs on
an Embedded RISC Architecture, Proc. 25th Ann. Interna-
tional Symposium on Microarchitecture, pp. 81-91, Portland,
OR, December, 1992.

C. Lefurgy, P. Bird, I. Cheng and T. Mudge, Code Density
Using Compression Techniques, Proc. of the 30th Annual In-
ternational Symposium on MicroArchitecture, pp. 194-203, De-
cember, 1997.

H. Lekatsas and W. Wolf, Random Access Decompression us-
ing Binary Arithmetic Coding, Proceedings of the 1999 IEEE
Data Compression Conference, pp. 306-315, March, 1999.

H. Lekatsas, J. Henkel and W. Wolf, Code Compression for
Low Power Embedded Systemn Design, To appear in the Pro-
ceedings of the 37th Design Automation Conference, June
2000.

H. Lekatsas, J. Henkel and W. Wolf, Arithmetic Coding for
Low Power Embedded System Design, To appear in the Pro-
ceedings of the 2000 IEEE Data Compression Conference,
March 2000.

J. Ziv and A. Lempel, A Universal Algorithm for Sequential
Data Compression, IEEE Transactions on Information The-
ory, Vol. 23(3), pp. 337-343, May, 1977.

T.C. Bell, J.G. Cleary and 1.H. Witten, Text Compression,
Prentice Hall, New Jersey, 1990.
S.Y. Liao, S. Devadas and K. Keutzer, Code Density Opti-
mization for Embedded DSP Processors Using Data Com-
ression Technigques, Proceedings of the 1995 Chapel Hill Con-
erence on Advanced Research in VLSI, pp. 393-399, 1995.
D.A. Huffman, A Method for the Construction of Minimum-
Redundancy Codes, Proceedings of the IRE, vol 4D, pp. 1098-
1101, September, 1952.
L. Benini, A. Macii, E. Macii and M. Poncino, Selective In-
struction Compression for Memory Energy Reduction in Em-
bedded Systems, IEEE/ACM Proc. of International Sympo-
sium on Low Power Electronics and Design (ISLPED’99), pp.
206-211, 1999.
Y.Li and J.Henkel, A Framework for Estimating and Min-
imizing Energy Dissipation of Embedded HW/SW Systems,
IEEE Proc. of 35th. Design Automation Conference (DAC98),
pp.188-193, 1998.

2]

=

{4

5]

6

[

(10]

(1]
(12]

(13}

(14]

(15]

